Terminology
This
page
is
part
of
the
FHIR
Specification
(v4.3.0:
R4B
(v5.0.0-ballot:
R5
Ballot
-
STU
see
ballot
notes
).
The
current
version
which
supercedes
this
version
is
5.0.0
.
For
a
full
list
of
available
versions,
see
the
Directory
of
published
versions
.
Page
versions:
R5
R4B
R4
R3
| Orders and Observations Work Group | Maturity Level : N/A | Standards Status : Informative |
Raw XML ( canonical form + also see XML Format Specification )
Definition for Code SystemStatisticsCode
<?xml version="1.0" encoding="UTF-8"?> <CodeSystem xmlns="http://hl7.org/fhir"> <id value="observation-statistics"/> <meta><lastUpdated value="2022-09-10T04:52:37.223+10:00"/> <profile value="http://hl7.org/fhir/StructureDefinition/shareablecodesystem"/> </meta> <text> <status value="generated"/> <div xmlns="http://www.w3.org/1999/xhtml"><p> This code system <code> http://hl7.org/fhir/observation-statistics</code> defines the following codes: </p> <table class="codes"> <tr> <td style="white-space:nowrap"> <b> Code</b> </td> <td> <b> Display</b> </td> <td> <b> Definition</b> </td> </tr> <tr> <td style="white-space:nowrap">average <a name="observation-statistics-average"> </a> </td> <td> Average</td>The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period.<td> The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">maximum <a name="observation-statistics-maximum"> </a> </td> <td> Maximum</td>The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period.<td> The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">minimum <a name="observation-statistics-minimum"> </a> </td> <td> Minimum</td>The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period.<td> The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">count <a name="observation-statistics-count"> </a> </td> <td> Count</td>The [number] of valid measurements over the stated period that contributed to the other statistical outputs.<td> The [number] of valid measurements over the stated period that contributed to the other statistical outputs.</td> </tr> <tr> <td style="white-space:nowrap">total-count <a name="observation-statistics-total-count"> </a> </td> <td> Total Count</td> <td> The total [number] of valid measurements over the stated period, including observations that were ignored because they did not contain valid result values.</td> </tr> <tr> <td style="white-space:nowrap">median <a name="observation-statistics-median"> </a> </td> <td> Median</td><td> The [median](https://en.wikipedia.org/wiki/Median) of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">std-dev <a name="observation-statistics-std-dev"> </a> </td> <td> Standard Deviation</td>The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period.<td> The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">sum <a name="observation-statistics-sum"> </a> </td> <td> Sum</td><td> The [sum](https://en.wikipedia.org/wiki/Summation) of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">variance <a name="observation-statistics-variance"> </a> </td> <td> Variance</td>The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period.<td> The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">20-percent <a name="observation-statistics-20-percent"> </a> </td> <td> 20th Percentile</td>The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.<td> The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">80-percent <a name="observation-statistics-80-percent"> </a> </td> <td> 80th Percentile</td>The 80th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.<td> The 80th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">4-lower <a name="observation-statistics-4-lower"> </a> </td> <td> Lower Quartile</td> <td> The lower [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">4-upper <a name="observation-statistics-4-upper"> </a> </td> <td> Upper Quartile</td> <td> The upper [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period.</td> </tr> <tr> <td style="white-space:nowrap">4-dev <a name="observation-statistics-4-dev"> </a> </td> <td> Quartile Deviation</td>The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile<td> The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile ) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile range is one-half the difference between the first and the third quartiles.</td> </tr> <tr> <td style="white-space:nowrap">5-1 <a name="observation-statistics-5-1"> </a> </td> <td> 1st Quintile</td> <td> The lowest of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td> </tr> <tr> <td style="white-space:nowrap">5-2 <a name="observation-statistics-5-2"> </a> </td> <td> 2nd Quintile</td> <td> The second of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td> </tr> <tr> <td style="white-space:nowrap">5-3 <a name="observation-statistics-5-3"> </a> </td> <td> 3rd Quintile</td> <td> The third of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td> </tr> <tr> <td style="white-space:nowrap">5-4 <a name="observation-statistics-5-4"> </a> </td> <td> 4th Quintile</td> <td> The fourth of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population.</td> </tr> <tr> <td style="white-space:nowrap">skew <a name="observation-statistics-skew"> </a> </td> <td> Skew</td> <td> Skewness is a measure of the asymmetry of the probability distribution of a real-valuedrandom variable about its mean. The skewness value can be positive or negative, or even undefined. Source: [Wikipedia](https://en.wikipedia.org/wiki/Skewness).random variable about its mean. The skewness value can be positive or negative, or even undefined. Source: [Wikipedia](https://en.wikipedia.org/wiki/Skewness).</td> </tr> <tr> <td style="white-space:nowrap">kurtosis <a name="observation-statistics-kurtosis"> </a> </td> <td> Kurtosis</td>Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosis).<td> Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosi s).</td> </tr> <tr> <td style="white-space:nowrap">regression <a name="observation-statistics-regression"> </a> </td> <td> Regression</td>Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wikipedia.org/wiki/Simple_linear_regression) This Statistic code will return both a gradient and an intercept value.<td> Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wi kipedia.org/wiki/Simple_linear_regression) This Statistic code will return both a gradient and an intercept value.</td> </tr> </table> </div> </text> <extension url="http://hl7.org/fhir/StructureDefinition/structuredefinition-wg"> <valueCode value="oo"/> </extension> <url value="http://hl7.org/fhir/observation-statistics"/> <identifier> <system value="urn:ietf:rfc:3986"/><value value="urn:oid:2.16.840.1.113883.4.642.4.2100"/> </identifier><version value="5.0.0-ballot"/> <name value="StatisticsCode"/> <status value="active"/> <experimental value="false"/> <caseSensitive value="true"/> <content value="complete"/> <concept> <code value="average"/> <display value="Average"/>The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period.<definition value="The [mean](https://en.wikipedia.org/wiki/Arithmetic_mean) of N measurements over the stated period."/> </concept> <concept> <code value="maximum"/> <display value="Maximum"/>The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period.<definition value="The [maximum](https://en.wikipedia.org/wiki/Maximal_element) value of N measurements over the stated period."/> </concept> <concept> <code value="minimum"/> <display value="Minimum"/>The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period.<definition value="The [minimum](https://en.wikipedia.org/wiki/Minimal_element) value of N measurements over the stated period."/> </concept> <concept> <code value="count"/> <display value="Count"/>The [number] of valid measurements over the stated period that contributed to the other statistical outputs.<definition value="The [number] of valid measurements over the stated period that contributed to the other statistical outputs."/> </concept> <concept> <code value="total-count"/> <display value="Total Count"/> <definition value="The total [number] of valid measurements over the stated period, including observations that were ignored because they did not contain valid result values."/> </concept> <concept> <code value="median"/> <display value="Median"/><definition value="The [median](https://en.wikipedia.org/wiki/Median) of N measurements over the stated period."/> </concept> <concept> <code value="std-dev"/> <display value="Standard Deviation"/>The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period.<definition value="The [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation) of N measurements over the stated period."/> </concept> <concept> <code value="sum"/> <display value="Sum"/><definition value="The [sum](https://en.wikipedia.org/wiki/Summation) of N measurements over the stated period."/> </concept> <concept> <code value="variance"/> <display value="Variance"/>The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period.<definition value="The [variance](https://en.wikipedia.org/wiki/Variance) of N measurements over the stated period."/> </concept> <concept> <code value="20-percent"/> <display value="20th Percentile"/>The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.<definition value="The 20th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period."/> </concept> <concept> <code value="80-percent"/> <display value="80th Percentile"/>The 80th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period.<definition value="The 80th [Percentile](https://en.wikipedia.org/wiki/Percentile) of N measurements over the stated period."/> </concept> <concept> <code value="4-lower"/> <display value="Lower Quartile"/> <definition value="The lower [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period."/> </concept> <concept> <code value="4-upper"/> <display value="Upper Quartile"/> <definition value="The upper [Quartile](https://en.wikipedia.org/wiki/Quartile) Boundary of N measurements over the stated period."/> </concept> <concept> <code value="4-dev"/> <display value="Quartile Deviation"/>The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile<definition value="The difference between the upper and lower [Quartiles](https://en.wikipedia.org/wiki/Quartile ) is called the Interquartile range. (IQR = Q3-Q1) Quartile deviation or Semi-interquartile range is one-half the difference between the first and the third quartiles."/> </concept> <concept> <code value="5-1"/> <display value="1st Quintile"/> <definition value="The lowest of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/> </concept> <concept> <code value="5-2"/> <display value="2nd Quintile"/> <definition value="The second of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/> </concept> <concept> <code value="5-3"/> <display value="3rd Quintile"/> <definition value="The third of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/> </concept> <concept> <code value="5-4"/> <display value="4th Quintile"/> <definition value="The fourth of four values that divide the N measurements into a frequency distribution of five classes with each containing one fifth of the total population."/> </concept> <concept> <code value="skew"/> <display value="Skew"/> <definition value="Skewness is a measure of the asymmetry of the probability distribution of a real-valuedrandom variable about its mean. The skewness value can be positive or negative, or even undefined. Source: [Wikipedia](https://en.wikipedia.org/wiki/Skewness).random variable about its mean. The skewness value can be positive or negative, or even undefined. Source: [Wikipedia](https://en.wikipedia.org/wiki/Skewness)."/> </concept> <concept> <code value="kurtosis"/> <display value="Kurtosis"/>Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosis).<definition value="Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Source: [Wikipedia](https://en.wikipedia.org/wiki/Kurtosi s)."/> </concept> <concept> <code value="regression"/> <display value="Regression"/>Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wikipedia.org/wiki/Simple_linear_regression) This Statistic code will return both a gradient and an intercept value.<definition value="Linear regression is an approach for modeling two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variables. Source: [Wikipedia](https://en.wi kipedia.org/wiki/Simple_linear_regression) This Statistic code will return both a gradient and an intercept value."/> </concept> </ CodeSystem >
Usage note: every effort has been made to ensure that the examples are correct and useful, but they are not a normative part of the specification.
FHIR
®©
HL7.org
2011+.
FHIR
Release
4B
(v4.3.0)
hl7.fhir.r4b.core#4.3.0
R5
Ballot
hl7.fhir.core#5.0.0-ballot
generated
on
Sat,
May
28,
Sep
10,
2022
12:49+1000.
04:54+1000.
Links:
Search
|
Version
History
|
Table
of
Contents
|
Glossary
|
QA
Page
|
Compare
to
R4
R4B
|
Compare
to
R5
Draft
|
|
Propose
a
change